Inorganic Chemistry

Crystal Structure and Cyclic Hydrogenation Property of Pr₄MgNi₁₉

Kenji Iwase,*^{,†} Naoyoshi Terashita,[‡] Kazuhiro Mori,[§] Hitoshi Yokota,[†] and Tetsuya Suzuki[†]

[†]Department of Materials Science and Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan [‡]Japan Metals & Chemicals Co., Ltd., Nishiokitama-gun, Yamagata 999-1351, Japan

[§]Research Reactor Institute, Kyoto University, 2-1010 Asashiro-nishi, Kumatori, Sennan, Osaka 590-0494, Japan

Supporting Information

ABSTRACT: The hydrogen absorption—desorption property and the crystal structure of Pr_4MgNi_{19} was investigated by pressure—composition isotherm measurement and X-ray diffraction (XRD). Pr_4MgNi_{19} consisted of two phases: 52.9% Ce_5Co_{19} -type structure (3R) and 47.0% Gd_2Co_7 -type structure (3R). Sm_5Co_{19} -type structure (2H) and Ce_2Ni_7 -type structure (2H) were not observed in the XRD profile. The Mg atoms substituted at the Pr sites in a $MgZn_2$ -type cell. The maximum hydrogen capacity reached 1.14 H/M (1.6 mass%) at 2 MPa. The hysteresis factor, $Hf = ln(P_{abs}/P_{des})$, was 1.50. The cyclic hydrogenation property of Pr_4MgNi_{19} was investigated up to 1000 absorption—desorption cycles. After 250, 500, 750, and 1000 cycles, the retention rates of hydrogen were reduced to 94%, 92%, 91%, and 90%, respectively. These properties were superior to those of Pr_2MgNi_9 and Pr_3MgNi_{14} .

1. INTRODUCTION

La–Mg–Ni alloys have been investigated to improve the hydrogenation property of hydrogen storage materials.^{1–3} La–Mg–Ni alloys with superlattice structures indicated that their hydrogen capacity measured by the volumetric method is higher than that of the LaNi₅ alloy.¹ Zhang et al. reported the crystal structure and the hydrogenation property of La₄MgNi₁₉.⁴ The alloy consists of Sm₅Co₁₉-type and Ce₅Co₁₉-type structures. The maximum hydrogen capacity reached 1.0 H/M (1.5 mass%) at 4 MPa. The wide plateau region was observed between 0.1 and 0.9 H/M. The enthalpy was determined from the van't Hoff plots to be -32.1 kJ/mol H₂ for absorption, which is close to the value for the LaNi₅–H₂ system (-30 kJ/mol H₂). The cyclic hydrogenation property of (La,Mg)₅Ni₁₉ was reported by Liu et al.⁵ The maximum hydrogen capacity after 30 cycles was reduced to 89% of the first cycle, which is inferior to LaNi₅.

Crystal structure and pressure–composition (P–C) isotherm of Pr_5Ni_{19} were investigated.^{6,7} The present authors reported that the alloy is composed of two phases: Sm_5Co_{19} -type Pr_5Ni_{19} (90 mass%) and $CaCu_5$ -type $PrNi_5$ (10 mass%).⁶ Sm_5Co_{19} -type Pr_5Ni_{19} consists of cells with the MgZn₂- and CaCu₅-type structures stacked along the *c* axis in a ratio of 1:3. The maximum hydrogen storage capacity of the first cycle reached 1.1 H/M, but 0.3 H/M of hydrogen remained in the alloy after the first desorption process. Lemort et al. reported the crystal structure and the hydrogenation property of $Pr_{3.75}Mg_{1.25}Ni_{19}$.⁸ The alloy consists of three phases of polymorphic Sm_5Co_{19} type (60%) and Ce_5Co_{19} -type (32%) structures and $PrNi_5$ (8%). It is also found that the Mg atoms substitute for the Pr sites in the MgZn₂-type cell in both the Sm_5Co_{19} -type and Ce_5Co_{19} -type structures. The maximum hydrogen capacity reached 1.1 H/M at 10 MPa, and the reaction was reversible during the absorption and desorption processes. The replacement of 25 at% of Pr by Mg leads to a 30% increase of the hydrogen capacity per weight and a decrease of the plateau pressure by half a decade. The cyclic hydrogenation properties of Pr_2MgNi_9 and Pr_3MgNi_{14} have also been reported, which compare favorably with $LaNi_5$.^{9,10}The hydrogen occupation in $MgZn_2$ - and $CaCu_5$ -type cells is related to expansion of those cells volume, which has an effect on hydrogenation property. Pr_3MgNi_{14} indicated the remarkable cyclic property,¹⁰ but the volume expansion of PrMgNi₄ and $PrNi_5$ cells were 0.47% and 3.68% after 1000 cycles. $PrMgNi_4$ and $PrNi_5$ cells stacked along the *c* axis in a ratio of 1:2. It is suggested that the $PrMgNi_4$ cell is relaxed $PrNi_5$ cell volume expansion. We expect that the cyclic property improves with increasing the ratio of the $PrNi_5$ cell.

In the present study, we focused on the cyclic property and the structural change of the Pr_4MgNi_{19} alloy. The alloy belongs either to the Sm_5Co_{19} -type structure or the Ce_5Co_{19} -type structure. The structure consists of $PrMgNi_4$ and $PrNi_5$ cells stacked along the *c* axis in a ratio of 1:3. A 2. $PrNi_5$ cell exists between two 1. $PrNi_5$ cells as shown in Figure 1. It is interesting to know the change of volumes of $PrMgNi_4$ and $PrNi_5$ cells and lattice strains during the hydrogen absorption–desorption process.

2. EXPERIMENTAL SECTION

A Pr–Mg–Ni ternary alloy was prepared by induction melting of Pr, Mg, and Ni metals (99.9%) in a high-purity alumina crucible under a

Received: August 29, 2013 Published: December 5, 2013

Figure 1. Gd_2Co7-type (3R) and Ce5Co19-type (3R) structures.

The chemical composition of the starting material was $\mathrm{Pr}_4 Mg_{1.5} Ni_{19}.$ The sample was not sealed under annealing. Mg atoms decreased during heat treatment. The chemical composition of the annealed sample was analyzed using an inductively coupled plasma analyzer. The sample was crashed under air, and then the powder sample was used for ICP. The result indicated a chemical composition of $\mathrm{Pr}_{4.03}Mg_{0.96}Ni_{19.05}.$

A powder sample was sieved to a particle size of <20 μ m for XRD measurements. The sample was crashed into powder in a mortar under air. The XRD data were collected in step-scan mode using a Rigaku Ultima IV diffractometer. Cu–K α radiation, monochromatized using a curved graphite crystal, was used. The structural parameters were refined using the Rietveld refinement program RIETAN-2000.^{11,12} The reliability of the fitting was judged from the goodness-of-fit parameter *S* defined as $S = R_{wp}/R_e$, where R_{wp} is the residue of the weighted pattern, and R_e is the statistically expected residue. The peak shape function that was used was a Pseudo–Voigt function containing Gaussian and Lorentzian functions. The anisotropic lattice strain was calculated using the Lorentzian parameter Y_e .¹³

The P–C isotherm was measured by Sieverts' method. The sample for the isotherm measurement was heated in vacuum at 413 K for 1 h and then held at measuring temperatures for 1 h in a stainless-steel container. Hydrogen was introduced at room temperature at 2.0 MPa, and then dehydrogenation was carried out using a rotary pump at 373 K for 1 h. After these processes had been performed three times, the cyclic examination was carried out automatically using a P–C isotherm machine. Fresh hydrogen gas (99.99999% purity) was introduced at each cycle. After each cycle, the sample was dehydrogenated using a rotary pump. The cyclic properties were measured at 313 K up to 1000 cycles.

3. RESULTS

3.1. Rietveld Analysis of Pr₄MgNi₁₉. Figure 2 shows the XRD profile of Pr_4MgNi_{19} in the 2θ region between 3° and 15° in which four superlattice reflections were observed. The *d* values were 1.6, 1.2, 0.8, and 0.6 nm. The first and third reflections correspond to the Ce₅Co₁₉-type structure (003 and 006) or the Sm₅Co₁₉-type structure (002 and 004). The second and fourth reflections are those of the Gd₂Co₇-type structure (003 and 006). The structure determination of Pr_4MgNi_{19} was carried out by Rietveld refinement of XRD data in the 2θ region between 15° and 85°. At 2θ values around 28°, 30.5°, and 31.5° small peaks from an unknown phase appear, and these data were excluded from the refinement. An initial

Figure 2. X-ray diffraction (XRD) profile of Pr_4MgNi_{19} in the 2θ region between 3° and 15°.

structural model based on two phases of the Sm₅Co₁₉-type structure (space group $P6_3/mmc$) and the Gd_2Co_7 -type structure (space group R-3m) was adopted for the Rietveld refinement. The calculated pattern did not fit well with the observed profile. The goodness-of-fit parameter S was as large as 2.8. The second structural model based on the Ce_5Co_{10} -type structure (space group R-3m) was then adopted, which agreed fairly well with the observed data and S = 2.0. The Ce₅Co₁₉type structure contains three different Pr sites: Pr1 at the 3a site and Pr2 at the 6c site in the PrNi₅ cells and Pr3 at the 6c site in the PrMgNi₄ cell. The substituted Mg atoms were located only at the Pr3 sites as shown in Figure 1. The final Rietveld refinement pattern is shown in Figure 3. The mass fractions of the Ce₅Co₁₉- and Gd₂Co₇-type phases were 52.9% and 47.0%, respectively. The structural parameters of the Ce₅Co₁₉-type phase are listed in Table 1.

Figure 3. Rietveld refinement pattern of XRD data for Pr₄MgNi₁₉.

3.2. P–C Isotherm of Pr₄MgNi₁₉. The P–C isotherm of Pr₄MgNi₁₉ for the first and second absorption–desorption process at 298 K is shown in Figures 4 (a) and (b). In the first cycle, the P–C isotherm was measured with no activation pretreatment. The maximum hydrogen capacity reached 1.14 H/M (1.6 mass%) at 2 MPa in the first absorption. The plateau pressure in the absorption and desorption processes were at $P_{\rm abs} = 0.9$ MPa and $P_{\rm des} = 0.2$ MPa. The hysteresis factor defined as Hf = $\ln(P_{\rm abs}/P_{\rm des})$ was 1.50. The plateau region of the first cycle was observed between 0.08 H/M and 0.93 H/M.

Table 1. Structural Parameters of Ce_5Co_{19} -Type Pr_4MgNi_{19} *a*-Space Group: *R*-3*m* (No. 166), *a* = 0.4979(1) nm, and *c* = 4.809(1) nm (R_{wp} = 15.4%, R_I = 7.6%, R_e = 7.7%, and *S* = 2.0)

atoms	site	g	x	у	z	$B (\times 10^{-2} \text{ nm}^2)$
Pr1	3a	1	0	0	0	0.9(1)
Pr2	6c	1	0	0	0.1577(1)	1.4(3)
Pr3	6c	0.500	0	0	0.0810(2)	0.3(6)
Mg	6c	0.500	0	0	0.0810(2)	0.3(6)
Ni	3b	1	0	0	1/2	0.2(1)
Ni	6c	1	0	0	0.2500(0)	0.4(4)
Ni	6c	1	0	0	0.3333(0)	0.3(2)
Ni	6c	1	0	0	0.4170(4)	0.5(1)
Ni	18h	1	0.5000(0)	0.5000(0)	0.1250(2)	0.7(5)
Ni	18h	1	0.5000(0)	0.5000(0)	0.0405(2)	0.4(3)

Figure 4. PC isotherm of Pr₄MgNi₁₉ at 298 K: (a) first absorption– desorption process and (b) second absorption–desorption process.

The second absorption—desorption process was measured after evacuation at 413 K for 2 h. In the second absorption desorption process, the absorption pressure decreased from 0.9 to 0.3 MPa.

3.3. Cyclic Absorption–Desorption Property of Pr_4MgNi_{19} . The cyclic property of Pr_4MgNi_{19} up to 1000 cycles is shown in Figure 5. The cyclic test was carried out at

Figure 5. Retention rate of Pr_4MgNi_{19} up to 1000 absorption-desorption processes.

313 K. The retention rate was calculated using the hydrogen capacity of the initial cycle as a reference. After 250, 500, 750, and 1000 cycles, the retention rates were 94%, 92%, 91%, and 90%, respectively. The decrease in the retention rate occurs up to 1000 cycles.

3.4. Crystal Structure after Cyclic Test. After the 1000 absorption–desorption cycles, the sample was examined by XRD. The XRD profile is shown in Figure 6, which is similar to the alloy before hydrogenation. The Bragg peaks broadened slightly in comparison with the original alloy. The two-phase model, which included the Ce_5Co_{19} -type and Gd_2Co_7 -type structures, was adopted, and the Rietveld refinement pattern is shown in Figure 6. The pattern was fitted using profile

Figure 6. Rietveld refinement of XRD data after 1000 absorption–desorption cycles. The sample contains two phases of Ce_5Co_{19} -type and Gd_2Co_7 -type structures.

parameters including the anisotropic broadening parameters X_e (crystallite size) and Y_e (lattice strain) and the isotropic parameter.^{13,14} The crystallite size of the alloy before hydrogenation was 300 nm. After the 1000 absorption–desorption cycles, the size decreased to 200 nm. The refined lattice parameters of Pr₄MgNi₁₉ with the Ce₅Co₁₉-type structure are a = 0.4985(2) nm, c = 4.852(1) nm; the unit cell volume is V = 1.0443(9) nm³. The calculated pattern fit well with the observation and S = 3.0.

4. DISCUSSION

4.1. Crystal Structure of Pr₄MgNi₁₉. The present authors investigated the Pr₅Ni₁₉ alloy.⁶ The crystal structure was studied by XRD and scanning transmission electron microscopy (STEM). Pr₅Ni₁₉ exhibits the Sm₅Co₁₉-type (2H). In the present study, however, the structural model used for Pr₄MgNi₁₉ was Ce₅Co₁₉-type (3R) with Mg atoms locating only at the Pr3 site of the MgZn₂-type cell. The structural model based on two phases of the Ce₅Co₁₉-type and Gd₂Co₇type structures was adopted for the Rietveld refinement, and a satisfactory fit was obtained. Mass fractions of the Ce₅Co₁₉-type and Gd₂Co₇-type phases were 52.9% and 47.0%, respectively. It is safely concluded that Mg substitution for Pr leads to relative stability of the Ce₅Co₁₉-type (3R) structure. The atomic displacement parameters were shown in Table 1. The value of Pr2 at the 6c site was over 1.0. Pr2 located in the 1. PrNi₅ cell. The PrMgNi₄ cell is deformed by Mg subsitution, which exsists between the 1. PrNi₅ cells. The atomic radius of Pr is larger than that of Mg. The anisotropically strain was formed in the PrMgNi₄ cell. It is suggested that the atomic displacement parameters of Pr2 are effected by the anisotropic strain of the PrMgNi₄ cell.

Lemort et al. reported the crystal structure of $Pr_{3.75}Mg_{1.25}Ni_{19}$.⁸ The sample was prepared by induction melting, and heat treatment was carried out 1173 K for 20 days under argon. $Pr_{3.75}Mg_{1.25}Ni_{19}$ exists in three phases: Sm_5Co_{19} -type (2H), Ce_5Co_{19} -type (3R), and $CaCu_5$ -type; the mass fractions of three phases are 60%, 32%, and 8%, respectively. This result does not agree with the present result for Pr_4MgNi_{19} in which the Ce_5Co_{19} -type and Gd_2Co_7 -type structures coexist. The reason for the discrepancy can be plausibly attributed to the difference of Mg content of the alloy and the treatment temperature (1343 K for Pr_4MgNi_{19} in the present work).

Zhang et al. investigated the crystal structure of La_4MgNi_{19} .⁴ The La_4MgNi_{19} ingot was prepared by induction melting. The obtained ingot was annealed at 1173 K for 48 h and then quenched to room temperature. Sm_5Co_{19} -type (2H) and Ce_5Co_{19} -type (3R) structures coexisted in the XRD profile. The mass fraction of 2H and 3R structures were 43% and 57%, respectively. The result also differs from the binary La_5Ni_{19} compound which exists only in a single 2H phase.¹⁵ As in the case of the La-Mg-Ni ternary system, partial substitution of Mg for La in La_5Ni_{19} favors the formation of the 3R phase.

4.2. Hydrogen Absorption–Desorption Properties. The P–C isotherm of Pr_3MgNi_{14} ternary alloy with a superlattice structure was reported by the present authors.¹⁰ Gd₂Co₇-type (3R) and PuNi₃-type (3R) phases coexisted in the alloy with mass fractions of 80% and 20%, respectively. The maximum hydrogen capacity reached 1.12 H/M (1.61 mass%) at 2 MPa. The plateau pressure was 0.1 MPa, and Hf was 1.47. A wide plateau region was observed between 0.14 and 1.00 H/M. The present hydrogenation properties of Pr_4MgNi_{19} such as

maximum hydrogen capacity, Hf, and plateau pressure are similar to those of Pr_3MgNi_{14} .

We investigated the hydrogen absorption-desorption property up to 1000 cycles of $Pr_2MgNi_{9,9}$ $Pr_3MgNi_{14,1}$ and Pr_4MgNi_{19} . The retention rates of these alloys are shown in Table 2. Pr_4MgNi_{19} indicated a retention rate of 90.0% at 1000

Table 2. Retention Rate of $Pr_2MgNi_{9,9}^{9} Pr_3MgNi_{14,1}^{10}$ and Pr_4MgNi_{19} at 100, 500, and 1000 Cycles

sample	100 cycles	500 cycles	1000 cycles
Pr ₂ MgNi ₉	96.3%	89.4%	85.3%
Pr ₃ MgNi ₁₄	95.3%	89.6%	87.5%
Pr ₄ MgNi ₁₉	96.3%	91.7%	90.0%

cycles, which is superior to those of Pr_2MgNi_9 (85.3%) and Pr_3MgNi_{14} (87.5%). Pr_2MgNi_9 exists in the pure $PuNi_3$ -type phase. 9 Pr_3MgNi_{14} contains both Gd_2Co_7 -type (80%) and $PuNi_3$ -type (20%) phases. 10 In the present Pr_4MgNi_{19} alloy, Ce_5Co_{19} -type (52.9%) and Gd_2Co_7 -type (47.0%) phases coexist. From this fact, it is considered that the cyclic property of the Ce_5Co_{19} -type structure is superior to other structures of PuNi_3-type and Gd_2Co_7 -type.

4.3. Expansion of PrMgNi_4-Type, PrNi_5-Type, and Unit Cells after the Cyclic Test. Expansions of lattice parameters and volumes of a unit cell, a $PrMgNi_4$ cell, and a $PrNi_5$ cell of the Ce₅Co₁₉-type structure after 1000 absorption-desorption processes are shown in Table 3.

Table 3. Expansions of Lattice Parameters and Volumes of a Unit Cell, a PrMgNi₄ Cell, and a PrNi₅ Cell after 1000 Absorption–Desorption Cycles

parameter	value
Pr ₄ MgNi ₁₄	
Ce ₅ Co ₁₉ -type	
а	0.12%
с	0.89%
V	1.14%
V (PrMgNi ₄ cell)	-2.02%
V (1. PrNi ₅ cell)	4.18%
V (2. PrNi ₅ cell)	-2.60%

The metal lattice expanded anisotropically, and the expansion is marked along the *c* axis. The volumes of 1. $PrNi_5$ cells increased in comparison with the original alloy, while $PrMgNi_4$ cells and the 2. $PrNi_5$ cell indicated shrinkage of 2%. It should also be noted that the shrinkage of $PrMgNi_4$ cells and $PrNi_5$ cells after 1000 cycles was not observed in $Pr_2MgNi_9^9$ and Pr_3MgNi_{14} .

4.4. Anisotropic and Isotropic Lattice Strain. The lattice strain was determined by the Rietveld analysis software RIETAN 2000.¹¹ The refined isotropic strain parameter (U) and the anisotropic strain parameter (Y_e) were used as the measures of isotropic and anisotropic strains. Nakamura and Akiba reported the lattice strain of LaNi_{4.75}Al_{0.25} during the first hydrogen absorption—desorption process by *in situ* XRD.¹⁶ The full hydride phase showed no anisotropic lattice strain. The isotropic lattice strain was smaller (0.2%) in the hydride alloy than the value (0.4%) for the original alloy. However, anisotropic lattice strain appeared in the hydride phase in the two-phase region of the desorption process. The strain reached 0.6% in the $\langle 001 \rangle$ direction.

Inorganic Chemistry

In this study, the retention rate of Pr_4MgNi_{19} reached 90% at 1000 cycles. After 1000 absorption–desorption cycles, the anisotropic broadening vector was determined to be $\langle 001 \rangle$, and the anisotropic and isotropic lattice strains were 0.2% and 0.1%, respectively, which do not differ from those after the first activation process. Specifically, the anisotropic and isotropic lattice strains form quickly and are saturated in the first activation process. The refined anisotropic lattice strain is smaller than that of LaNi_{4.75}Al_{0.25}.

4.5. Hydrogen Occupation. Nakamura et al. reported the crystal structure of La₄MgNi₁₉ deuterided by *in situ* X-ray and neutron powder diffraction.¹⁷ The alloy consisted of 5 phases: 51% Ce₅Co₁₉-type, 19% Pr₅Co₁₉-type, 16% Gd₂Co₇-type, 10% Ce2Ni7-type, and 4% CaCu5-type structures. The deuteride phases of the 5:19 and 2:7 compounds kept the symmetry of the original alloy upon deuteration. Unit cells, A_2B_4 cells, AB_5 -1 cells, and AB₅-2 cells of the Ce₅Co₁₉-type deuteride expanded almost isotropically. The deuterium content of A2B4 cells, AB5-1 cells, and AB₅-2 cells are 0.98 D/M, 0.82 D/M, and 1.04 D/ M, respectively. The change of structural parameters and the volume of a unit cell, the PrMgNi₄ cell, the 1. PrNi₅ cell, and the 2. PrNi₅ cell of Pr₄MgNi₁₉ with Ce₅Co₁₉-type as shown in Table 3 after hydrogenation are significantly different from La4MgNi19. It is particularly interesting to elucidate how hydrogen occupies each MgZn2- and CaCu5-type cell during hydrogenation and how the hydrogen occupation of the cell is related to the hydrogenation properties. The cell expansion corresponds to the amount of hydrogen inserted into each of the cells. Considering the expansion of each cell, the hydrogen occupation of the 1. PrNi5 cell is larger than that of the PrMgNi₄ and 2. PrNi₅ cells. In particular, the hydrogen occupation and atomic position in the 2. PrNi5 cell is interesting. It is expected that the special hydrogen atomic position and the behavior of cells during hydrogenation is related to the cyclic property. In order to clarify the detailed structural change during hydrogenation, in situ neutron diffraction of Pr-Mg-Ni alloys is under way.

5. CONCLUSIONS

We studied the cyclic property and the structural parameters of Pr₄MgNi₁₉. The retention rate of Pr₄MgNi₁₉ after 1000 absorption-desorption processes was greater than those of Pr₂MgNi₉ and Pr₃MgNi₁₄. The refined structural parameters of the original alloy and the dehyrided alloy after the cyclic test was obtained by Rietveld refinement. A satisfactory fit was obtained by using a two-phase model containing Ce₅Co₁₉-type and Gd₂Co₇-type structures for Pr₄MgNi₁₉. The metal lattice of the dehydrided alloy expanded anisotropically along the *c* axis. The volumes of 1. PrNi₅ cells increased in comparison with the original alloy, while PrMgNi4 cells and 2. PrNi5 cells indicated shrinkage. The anisotropic lattice strain of the Ce₅Co₁₉-type structure is similar to that of LaNi_{4.75}Al_{0.25}. It is known that LaNi_{4.75}Al_{0.25} shows an excellent cyclic property among hydrogen absorbing alloys. The lattice strain of Pr₄MgNi₁₉ assures the good cyclic property of hydrogen absorption.

ASSOCIATED CONTENT

S Supporting Information

cif files. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Phone: +81-29-287-7189. Fax: +81-29-287-7189. E-mail: fbiwase@mx.ibaraki.ac.jp.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank Emeritus Professor H. Asano (University of Tsukuba) for helpful advice.

REFERENCES

(1) Kohno, T.; Yoshida, H.; Kawashima, F.; Inaba, T.; Sakai, I.; Yamanoto, M.; Kanda, M. J. Alloys Compd. 2000, 311, L5–L7.

(2) Akiba, E.; Hayakawa, H.; Kohno, T. J. Alloys Compd. 2006, 408–412, 280–283.

(3) Yasuoka, S.; Magari, Y.; Murata, T.; Tanaka, T.; Ishida, J.; Nakamura, H.; Nohma, T.; Kihara, M.; Baba, Y.; Teraoka, H. *J. Power Sources* **2006**, *156*, 662–666.

(4) Zhang, Q.; Fang, M.; Si, T.; Fang, F.; Sun, D.; Ouyang, L.; Zhu, M. J. Phys. Chem. C 2010, 114, 11686–11692.

(5) Liu, Z. Y.; Yan, X. L.; Wang, N.; Chai, Y. J.; Hou, D. L. Int. J. Hydrogen Energy **2011**, 36, 4370–4374.

(6) Iwase, K.; Sakaki, K.; Matsuda, J.; Nakamura, Y.; Ishigaki, T.; Akiba, E. Inorg. Chem. 2011, 50, 4548-4552.

(7) Lemort, L.; Latroche, M.; Knosp, B.; Bernard, P. J. Alloys Compd. 2011, 509S, S823–S826.

(8) Lemort, L.; Latroche, M.; Knosp, B.; Bernard, P. J. Phys. Chem. C 2011, 115, 19437-19444.

(9) Iwase, K.; Terashita, N.; Mori, K.; Tsunokake, S.; Ishigaki, T. *Int. J. Hydrogen Energy* **2012**, *37*, 18095–18100.

(10) Iwase, K.; Terashita, N.; Mori, K.; Ishigaki, T. Inorg. Chem. 2012, 51, 11805–11810.

(11) Izumi, F. Rigaku J. 2000, 17, 34-45.

(12) Izumi, F. In *The Rietveld Method*; Young, R. A., Ed.; International Union of Crystallography, Oxford University Press: New York, 1993; pp 236–253.

(13) Willianson, G. K. Acta Metall. 1953, 1, 22-31.

(14) Patterson, A. L. Phys. Rev. 1939, 56, 978-982.

(15) Ferey, A.; Cuevas, F.; Latroche, M.; Knosp, B.; Bernard, P. *Electrochim. Acta* **2009**, *54*, 1710–1714.

(16) Nakamura, Y.; Akiba, E. J. Alloys Compd. **2000**, 308, 309–318.

(17) Nakamura, J.; Iwase, K.; Hayakawa, H.; Nakamura, Y.; Akiba, E. J. Phys. Chem. C 2009, 113, 5853–5859.